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Summary10

Perception can be characterized as an inference process in which beliefs are formed about the11

world given sensory observations. The sensory neurons implementing these computations, however,12

are classically characterized with firing rates, tuning curves, and correlated noise. To connect13

these two levels of description, we derive expressions for how inferences themselves vary across14

trials, and how this predicts task-dependent patterns of correlated variability in the responses15

of sensory neurons. Importantly, our results require minimal assumptions about the nature of16

the inferred variables or how their distributions are encoded in neural activity. We show that our17

predictions are in agreement with existing measurements across a range of tasks and brain areas.18

Our results reinterpret task-dependent sources of neural covariability as signatures of Bayesian19

inference and provide new insights into their cause and their function.20

Highlights21

22

• General connection between neural covariability and approximate Bayesian inference based23

on variability in the encoded posterior density.24

• Optimal learning of a discrimination task predicts top-down components of noise correlations25

and choice probabilities in agreement with existing data.26

• Differential correlations are predicted to grow over the course of perceptual learning.27

• Neural covariability can be used to ’reverse-engineer’ the subject’s internal model.28
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Introduction29

Perceiving and acting in the world are remarkable feats of neural computation. A central goal of30

neuroscience is to simultaneously characterize both the neural mechanisms of these processes31

and, more abstractly, the computations implemented by those mechanisms (Marr, 1982). Currently,32

neural and computational levels of description lack clear links, even in such controlled settings as33

binary perceptual decision-making tasks (Parker and Newsome, 1998; Gold and Shadlen, 2007):34

neural models of perceptual decision-making are typified by encoding/decoding models built on35

population firing rates (Dayan and Abbott, 2001), while computational approaches typically model36

perception as approximate Bayesian inference (Knill and Pouget, 2004). This paper derives an37

analytical link between these frameworks, thus providing a novel explanation for observed changes38

in noise correlations due to factors such as task-switching and learning (Cohen and Newsome,39

2008; Rabinowitz et al., 2015; Bondy et al., 2018; Ni et al., 2018).40

The encoding/decoding framework models perceptual decision-making as a signal-processing41

problem: sensory neurons transform input signals, and downstream areas separate task-relevant42

signals from noise (Parker and Newsome, 1998). Theoretical arguments have shown how both43

encoded information (Zohary et al., 1994; Oram et al., 1998; Averbeck et al., 2006; Ecker et al.,44

2011; Moreno-Bote et al., 2014) and correlations between neurons and behavior (“choice probabilities”)45

(Shadlen et al., 1996; Haefner et al., 2013; Pitkow et al., 2015) depend on correlations among46

pairs of neurons, motivating numerous experimental studies into the nature of so-called “noise47

correlations” (Cohen and Newsome, 2008; Bondy et al., 2018; Goris et al., 2014; Ecker et al., 2014;48

2016; Pitkow et al., 2015) (reviewed in (Kohn et al., 2016)). However, the extent to which choice49

probabilities and noise correlations are due to causally feedforward or feedback mechanisms is50

largely an open question (Nienborg and Cumming, 2009; Bondy et al., 2018; Goris et al., 2014;51

Wimmer et al., 2015) that has profound implications for their computational role (Nienborg and52

Cumming, 2010; Kohn et al., 2016; Lange and Haefner, 2017; Lueckmann et al., 2018; Macke and53

Nienborg, 2019).54

The Bayesian inference framework, on the other hand, premises that the goal of sensory systems55

is to infer the latent causes of sensory signals (von Helmholtz, 1925) (Figure 1). This has motivated56

numerous theories of neural coding in which neural activity represents distributions of inferred57

variables (Zemel et al., 1998; Knill and Pouget, 2004; Fiser et al., 2010; Pouget et al., 2013; Ma58

and Jazayeri, 2014; Gershman and Beck, 2016). Bayesian inference further provides a rationale59

for the preponderance of feedback connections in the brain, which have been hypothesized to60

communicate contextual prior information or expectations (Mumford, 1992; Lee and Mumford,61

2003; Summerfield and de Lange, 2014; de Lange et al., 2018).62

Here, we provide a missing link between these two frameworks: we show how principles of63

probabilistic learning and inference predict both task-dependent changes in the correlated variability64

among neural responses and the relationship between those responses and behavior. Assuming65

that neural responses represent posterior beliefs in a generative model of sensory inputs (von66

Helmholtz, 1925; Lee and Mumford, 2003; Kersten et al., 2004; Fiser et al., 2010), we derive67

predictions for how causally feedback or top-down components of neurons’ choice probabilities68

and noise correlations should depend on the neurons’ tuning to a stimulus.69
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Figure 1. Illustration of the components of our framework and how they relate to experimentally
observed quantities. a-b) The experimenter varies the sensory evidence, E, (e.g. images on
the retina) according to s (e.g. orientation). The brain computes p(x,I|E), its beliefs about latent
sensory variables of interest conditioned on those observations. I represents other “internal state”
variables that are probabilistically related to x. The recorded neurons are assumed to encode
the brain’s posterior beliefs about x through a distributional representation scheme, R. In the
case of perceptual discrimination tasks, behavior is used to infer “categorical beliefs” about the
stimulus, which are a subset of I. Solid black arrows represent statistical dependencies in the
implicit generative model, not information flow. Dashed lines cross levels of abstraction. c)
Example Generative Model 1: Olshausen and Field (1996) proposed that V1 performs inference
in a linear-Gaussian “sparse coding” model fit to natural images. Here, x would correspond to
the intensities of the Gabor elements in a given image. d) Example Generative Model 2: along
the ventral stream, object recognition has been hypothesized to invert a generative model which
proceeds from objects to parts to image features to images. x corresponds to inferred features at
any level.

Surprisingly, we find that after learning a task, the key signature of approximate inference in70

sensory responses are so-called “differential” or “information-limiting” correlations (Moreno-Bote71

et al., 2014). As a direct corollary, we predict these correlations to increase during task-learning.72

We further suggest a new way to interpret low-dimensional variability and choice probabilities in73

sensory neural populations as signatures of varying beliefs fed back to sensory areas. These74

results explain puzzling task-dependent patterns of noise correlations reported in previous studies75

(Cohen and Newsome, 2008; Rabinowitz et al., 2015; Bondy et al., 2018; Haimerl et al., 2019).76

Finally, these results imply, conversely, that sensory neural data can be used to infer a subject’s77

beliefs in a task, which we illustrate in simulation. Our results provide a normative justification78

for the growing empirical evidence for task- and choice-dependent feedback to sensory areas –79

which is hard to justify in the classic framework – by re-interpreting this feedback as a signature of80

a broad class of hierarchical inference algorithms.81
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Results82

Our results are organized as follows: first, we relate general distributional neural codes to neural83

tuning curves and correlated variability. We then apply this framework to the case of two-alternative84

forced-choice tasks and show that, after learning, trial-by-trial variations in a subject’s categorical85

beliefs imply noise correlations previously described as “differential” or “information-limiting”. We86

then generalize these results to incorporate task-independent noise. These results predict clear87

signatures of Bayesian inference and learning in pairwise neural firing rate statistics, which we88

compare with existing data. Finally, we illustrate how observed neural correlations can be used,89

conversely, to infer a subject’s internal beliefs from neural responses.90

Sources of neural variability in distributional codes91

Following previous work, we assume that the brain has learned an implicit generative model of its92

sensory inputs (Figure 1c-d) (Lee and Mumford, 2003; Fiser et al., 2010; Olshausen and Field,93

1997; Kersten et al., 2004; Yuille and Kersten, 2006), and that populations of sensory neurons94

encode posterior beliefs over latent variables in the model conditioned on sensory observations:95

a hypothesis we refer to as “posterior coding.” The responses of such neurons necessarily depend96

both on information from the sensory periphery, and on relevant information in the rest of the brain.97

In a hierarchical model, likelihoods are computed based on feedforward signals from the periphery,98

and contextual expectations are relayed by feedback from other areas (Lee and Mumford, 2003)99

(Figure 1b).100

In our notation, E is the variable directly observed by the brain – the sensory input or evidence –101

and x is the (typically high-dimensional) variable whose posterior is assumed to be represented by102

the recorded neural population under consideration. I is a high-dimensional vector representing103

all other internal variables in the brain that are probabilistically related to, and hence determine104

“expectations” for x (Figure 1b)1. For instance, when considering the responses of a population of105

V1 neurons, E is the image on the retina, and x has been hypothesized to represent the presence106

or absence of Gabor-like features at particular retinotopic locations (Bornschein et al., 2013) or107

the intensity of such features (Olshausen and Field, 1996; Schwartz and Simoncelli, 2001) (Figure108

1c), though our results are independent of the exact nature of x. In higher visual areas, variables109

could be related to the features or identity of objects and faces (Kersten et al., 2004; Yuille and110

Kersten, 2006) (Figure 1d). I represents higher-level variables, as well as knowledge about the111

visual surround, task-related knowledge about the probability of upcoming stimuli, etc.112

The rules of Bayesian inference allow us to derive expressions for variability in posterior distributions113

as the result of learning and inference. Importantly, the rules of Bayesian inference apply to114

computational variables (Figure 1b); it is a conceptually distinct step to link variability in posteriors115

to variability in neurons encoding those posteriors. We use ‘R’ to denote the encoding from116

distributions over internal variables x into neural responses (Figure 2a,b). For reasonable encoding117

schemes R, the chain rule from calculus applies: small changes in the encoded posterior result in118

small changes in the expected statistics of neural responses (Figure 2c, Methods). For instance,119

1The term “prior” is often overloaded, referring sometimes to stationary statistics learned over long time scales, and
sometimes to dynamic changes to the posterior due to higher-level inferences or internal states. Therefore, we refer to
the dynamic effect of internal states on x as “expectations”.
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Figure 2. Neural representation of probability distributions. a-b) If neural responses encode a
distribution over latent variables x, then one may think of the relation between x and r as a
mapping from the space of distributions of latent variables (a) to the space of distributions of
neural responses (b). Any given distribution on x may be stochastically encoded in r, for instance
by Monte Carlo samples or by noisily representing parameters. Our derivation assumes that
smoothly changing posteriors (a) corresponds to smooth changes in neural responses (b). c)
Mean spike counts (or firing rates) across trials define a tuning curve. f′ is the tangent vector to
the tuning curve. It encodes, in part, the change in the underlying posterior over x (insets).

we can express the change of a single neuron’s firing rate, f , in response to a change in stimulus,120

s, as121

d f
ds

=

〈
d f

dp(x|E(s))
,
dp(x|E(s))

ds

〉
, (1)

where 〈·, ·〉 is an inner product in the space of distributions over x.2 The second term in brackets is122

the change in the posterior as s changes, and the first term relates those changes in the posterior123

to changes in the neuron’s firing rate.124

It follows that there are two sources of neural variability acting at different levels of abstraction:125

variability in the encoding of a given posterior (Figure 3a-c), and variability in the posterior itself126

(Figure 3d-f) (Beck et al., 2012).127

Distributional coding schemes (Zemel et al., 1998; Fiser et al., 2010; Pouget et al., 2013; Gershman128

and Beck, 2016) typically assume that a given posterior may be realized in a distribution of possible129

neural responses, which we refer to as variability in the encoding (Figure 3a-c). For instance,130

it has been hypothesized that neural activity encodes samples stochastically drawn from the131

posterior (Hoyer and Hyvärinen, 2003; Buesing et al., 2011; Pecevski et al., 2011; Savin and132

Denève, 2014; Petrovici et al., 2016; Haefner et al., 2016; Aitchson and Lengyel, 2016; Orbán133

et al., 2016; Aitchison et al., 2018). Alternatively, neural activity may noisily encode parameters of134

an approximate posterior (Ma et al., 2006; Beck et al., 2008; 2011; 2013; Raju and Pitkow, 2016;135

Pitkow and Angelaki, 2017; Vertes and Sahani, 2018). Such distributional encoding schemes are136

reviewed in (Fiser et al., 2010; Pouget et al., 2013; Gershman and Beck, 2016). Previous work has137

linked (co)variability in neural responses to sampling-based encoding of the posterior (Hoyer and138

2For now we are suppressing “noise” for the sake of exposition, but will return to it later in the results.
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Hyvärinen, 2003; Berkes et al., 2011; Orbán et al., 2016; Haefner et al., 2016; Bányai et al., 2019;139

Bányai and Orbán, 2019). Our results are complementary to these; here we study trial-by-trial140

changes in the posterior itself, and how these changes affect the expected statistics of neural141

responses such as mean spike count and noise correlations of neural responses. Importantly, our142

results apply to a wide class of distributional codes including all of the above (Methods).143

To a first approximation, trial-by-trial variability in the encoded posterior manifests as neural144

(co)variability that simply sums with the variability in the encoding already discussed (Figure 3d-f).145

For instance, noise in the stimulus, sensory measurements, and afferent neural signals affect the146

likelihood (Faisal et al., 2008; Stocker and Simoncelli, 2006; Körding et al., 2007), and variable147

internal states may influence sensory expectations through feedback (Nienborg and Roelfsema,148

2015; Lange and Haefner, 2017). We will ignore such task-independent noise for our initial results.149

Instead, our first results concern variability in the posterior due to variability in task-relevant beliefs150

or expectations (Nienborg and Roelfsema, 2015; Haefner et al., 2016). Variable expectations151

may reflect a stochastic approximate inference algorithm (Hoyer and Hyvärinen, 2003) or model152

mismatch, for example if the brain picks up on spurious dependencies in the environment as part153

of its model (Beck et al., 2012; Yu and Cohen, 2009; Fründ et al., 2014; Fischer and Whitney,154

2014). In the remainder of this paper, we make these ideas explicit for the case of two-alternative155

decision-making tasks for which much empirical data exists.156

Inference and discrimination with arbitrary sensory variables157

In the special case of inference in a two-alternative discrimination task, stimuli are parameterized158

along a single dimension, s, and subjects learn to make categorical judgments according to an159

experimenter-defined boundary which we assume is at s = 0 (Figure 4a). We will use C ∈ {1,2} to160

denote the two categories, corresponding to s < 0 and s > 0. Throughout this paper, our running161

example will be of orientation discrimination, in which case s is the orientation of a grating with162

s = 0 corresponding to horizontal, and C refers to clockwise or counter-clockwise tilts (Figure 4b).163

While our derivations make no explicit assumptions about the nature of the brain’s latent variables,164

x, our illustrations will use the example of oriented Gabor-like features in a generative model of165

images (Figure 1c, Figure 4b).166

Whereas much previous work on perceptual inference assumes that the brain explicitly infers167

relevant quantities defined by the experiment (Gold and Shadlen, 2007; Knill and Pouget, 2004;168

Ma et al., 2006; Beck et al., 2008), we emphasize the distinction between the external stimulus169

quantity being categorized, s, and the latent variables in the subject’s sensory model of the world,170

x. For the example of orientation discrimination, a grating image E(s) is rendered to the screen171

with orientation s, from which V1 infers an explanation of the image as a combination of Gabor-like172

basis elements, x. The task of downstream areas of the brain – which have no direct access to173

E nor s – is to estimate the stimulus category based on a probabilistic representation of x (Figure174

4b) (Haefner et al., 2016; Shivkumar et al., 2018). Crucially it is the posterior over x, rather than175

over s, which we hypothesize is represented by sensory neurons.176
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Figure 3. Neural co-variability may arise due to either (a-c) stochastic encoding or (d-f) variability in
the posterior. a) Consider the case where there is no variability in I or E and inference is exact, but
posteriors are noisily realized in neural responses r. b) Exact inference always produces the same
posterior for x for fixed E and I. c) The neural encoding of a given distribution may be stochastic, so
a single posterior (b) becomes a distribution over neural responses r. The shape of this distribution
may or may not relate to the shape of the posterior in (b), depending on the encoding (e.g. there is
a correspondence in sampling, but not in parametric codes). d) Noise perturbs the likelihood, and
the subject’s beliefs vary. Both affect the posterior. Variable beliefs are the subject of our initial
results, while noise will be considered later. e) Variability in the posterior can be thought of as a
distribution over the space of possible posteriors. f) Each individual posterior in (e) is a point in
the space of expected statistics of r, such as expected spike counts. Variability in the underlying
posterior may appear as correlated variability in spike counts.
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Figure 4. a) A discrimination task defines a joint distribution between category C and stimulus
parameter s, which gives rise to sensory inputs E. The brain performs inference over sensory
latent variables (x) and estimated category (Ĉ) conditioned on the stimulus (E). Graded beliefs
about the binary category are expressed as π ≡ pb(Ĉ| . . .). Implicitly, these inferences are with
respect to an internal model pb (black arrows). A Bayesian observer learns a joint distribution
between x and Ĉ, implying bi-directional influences during inference: x → Ĉ is analogous to
“decoding,” while Ĉ→ x conveys task-relevant expectations. b) Conceptual illustration of (a) for fine
orientation discrimination, where latents x are Gabor-like features in a generative image model.
The “decoder” then forms a belief, π, over internal estimates of the category. c) Visualization of
how the prior (top row) and likelihood (bottom row) contribute to the posterior (middle row), with x
as a one-dimensional variable. Changes to s change the likelihood (middle column). Changes in
expectation, π, are changes in the prior (right column). Crucially, changes in the posterior in both
cases (middle row) are approximately equal.
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Task-specific expectations177

Probabilistic relations are inherently bi-directional: any variable that is predictive of another variable178

will, in turn, be at least partially predicted by that other variable. In the context of perceptual179

decision-making, this means that sensory variables, x, that inform the subjects’ internal belief180

about the category, Ĉ, will be reciprocally influenced by the subject’s belief about the category181

(Figure 4a). Inference thus gives a normative account for feedback from “belief states” to sensory182

areas: changing beliefs about the trial category entail changing expectations about the sensory183

variables whenever those sensory variables are part of the process of forming those beliefs (Lee184

and Mumford, 2003; Lee et al., 2014; Nienborg and Roelfsema, 2015; Haefner et al., 2016).185

A well-known identity for well-calibrated probabilistic models is that their prior is equal to their186

average inferred posterior (Dayan and Abbott, 2001; Fiser et al., 2010; Berkes et al., 2011). We187

derive an analogous expression for the optimal prior over x upon learning the statistics of a task188

(Methods):189

pb(x|Ĉ = c) = Epe(s|C=c)[pb(x|E(s))] . (2)

Equation (2) states that, given knowledge of an upcoming stimulus’ category, Ĉ = c, the optimal190

prior on x is the average posterior from earlier trials in the same category (Stocker and Simoncelli,191

2007). The subscript ’b’ refers the brain’s internal model, while ’e’ refers to the experimenter-defined192

model (Figure 4a, Methods). To use the orientation discrimination example, knowing that the193

stimulus is “clockwise” increases the expectation that more clockwise-tilted Gabor features will be194

present, since they were inferred to be present in earlier clockwise trials. Importantly, equation (2)195

is true regardless of the nature of x or s. It is a self-consistency rule between prior expectations196

and posterior inferences that is true for any ideal learner given sufficient experience (Dayan and197

Abbott, 2001; Berkes et al., 2011) (see also Supplemental Text). This self-consistency rule allows198

us to relate neural responses to the stimulus (s) to neural responses to internal beliefs (π) without199

specific assumptions about x.200

In binary discrimination tasks, the subject’s belief about the correct category is a scalar quantity,201

which we denote by π = p(Ĉ = 1). Given π, the optimal expectations for x are a correspondingly202

graded mixture of the per-category priors:203

pb(x|π) = πpb(x|Ĉ = 1)+(1−π)pb(x|Ĉ = 2). (3)

The posterior over x for a single trial depends on both the stimulus and belief for that trial :204

pb(x|π,E(s)) ∝ pb(E(s)|x)pb(x|π). (4)

We will next derive the specific pattern of neural correlated variability when π varies.205

Variability in the posterior due to changing expectations206

Even when the stimulus is fixed, subjects’ beliefs and decisions are known to vary (Parker and207

Newsome, 1998). Small changes in a Bayesian observer’s categorical belief (∆π) result in small208

changes in their posterior distribution over x, which can be expressed as the derivative of the209

posterior with respect to π (assuming the stimulus has been fixed to the category boundary):210
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d
dπ

pb(x|E(s = 0),π)
∣∣∣∣
π=1/2

.

Our first result is that this derivative is approximately proportional to the derivative of the posterior211

with respect to the stimulus. Mathematically, the result is as follows:212

d
dπ

pb(x|E(s = 0),π)
∣∣∣∣
π=1/2

∼
∝

d
ds

pb(x|E(s),π = 1/2)

∣∣∣∣
s=0

, (5)

where the symbol ∼∝ should be read as “approximately proportional to” (see Methods for proof)213

(Figures 4c, S2).214

Equation (5) states that, for a Bayesian observer, small variations in the stimulus around the215

category boundary have the same effect on the inferred posterior over x as small variations in their216

categorical beliefs. The proof makes four assumptions: first, the subject must have fully learned217

the task statistics, as specified by equations (2) and (3). Second, the two stimulus categories218

must be close together, i.e. the task must be near or below psychometric thresholds, such that219

neural dependencies on the stimulus are approximately linear. Third, variations of stimuli within220

each category must be small. We further discuss these conditions and possible relaxations in the221

Supplemental Text. Finally, we have assumed that there are no additional noise sources causing222

the posterior to vary; we consider the case of noise in the section “Effects of task-independent223

noise” below.224

Feedback of variable beliefs implies differential correlations225

Applying the “chain rule” in equation (1) to equation (5), it directly follows that226

df
dπ

∣∣∣∣ s=0
π=1/2

∼
∝

df
ds

∣∣∣∣ s=0
π=1/2

, (6)

implying that the effect of small changes in the subject’s categorical beliefs (π) is approximately227

proportional to the effect of small changes in the stimulus on the responses of sensory neurons that228

encode the posterior. Both induce changes to the mean rate in the f′ ≡ df/ds direction. Because229

f′ itself is task-dependent, variable task-relevant beliefs will add to neural covariability in the f′230

direction above and beyond whatever intrinsic covariability was present before learning. We obtain,231

to a first approximation, the following expression for the noise covariance between neurons i and232

j:233

Σi j = Σ
intrinsic
i j +Σ

belief
i j , (7)

where Σ
intrinsic captures “intrinsic” noise such as Poisson noise in the encoding. It follows from (6)234

that235

Σ
belief
i j

∼
∝ var(π)f′if

′>
j . (8)

Interestingly, this is exactly the form of so-called “information-limiting” or “differential” covariability236

(Moreno-Bote et al., 2014). Whereas in the feedforward framework this covariability arises due to237

variability in the sensory inputs limiting the information about s in the population (Moreno-Bote238
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et al., 2014; Kanitscheider et al., 2015; Kohn et al., 2016), here it arises due to feedback of239

variable beliefs about the stimulus category. Unless these beliefs are true, or unless downstream240

areas have access to and can compensate for π, the differential covariability induced by π limits241

information like its bottom-up counterpart (Kohn et al. (2016); Lange and Haefner (2017); Bondy242

et al. (2018); also see Discussion). Importantly, unlike feedforward differential covariability, the243

feedback differential covariability predicted here arises as the result of task-learning, which makes244

their relative strength an empirically decidable question.245

Variable beliefs imply structure in choice probabilities246

A direct prediction of the feedback of beliefs π to sensory areas is that the average neural response247

preceding choice 2 will be biased in the +f′ direction, and the average neural response preceding248

choice 1 will be biased in the −f′ direction, since the subject’s actual choices will be based on their249

belief, π. Feedback of π will therefore introduce additional correlations between neural responses250

and choice above and beyond those predicted by a purely feedforward “readout” of the sensory251

neural responses (Parker and Newsome, 1998; Nienborg and Cumming, 2009; Nienborg et al.,252

2012; Haefner et al., 2013; Pitkow et al., 2015; Wimmer et al., 2015; Haefner et al., 2016). This253

top-down component of choice probability is predicted to be proportional to neural sensitivity:254

CPi−
1
2
∼
∝ d′i , (9)

where d′i ≡ f ′i /σi is the “d-prime” sensitivity measure of neuron i from signal detection theory255

(Green and Swets, 1966) (Figure 6a; Methods). Interestingly, the classic feedforward framework256

makes the same prediction for the relation between neural sensitivity and choice probability assuming257

an optimal linear decoder (Haefner et al., 2013; Pitkow et al., 2015), raising the question to what258

degree the empirically observed relationship between CPs and neural sensitivity (Law and Gold,259

2008) is due to changes in the feedforward read-out over learning as commonly assumed (Parker260

and Newsome, 1998; Law and Gold, 2009) versus changes in feedback signals due to variable261

beliefs.262

Effects of task-independent noise263

The above results assumed no measurement noise nor variability in other internal states besides264

the relevant belief π. In the presence of noise, the posterior itself changes from trial to trial even for265

a fixed stimulus s and fixed beliefs π (Stocker and Simoncelli, 2006). To study the consequences of266

this added variability, we introduce a variable, ε, that encompasses all sources of task-independent267

noise each trial, and condition the posterior on its value: p(x|E(s),π;ε) (Methods). This impacts268

our main results in two principal ways, laid out in the following two sections: first, although ideal269

learning still implies that the average posterior equals the prior (equation (2)), the “average” must270

now be taken over both s and the distribution of noise p(ε). Second, task-independent noise271

will interacts a task-dependent prior (Figure 5) which also has a task-dependent effect on neural272

covariability.273

Variable beliefs in the presence of noise274

In the presence of noise, a neuron’s sensitivity to the stimulus, d fi
ds , can be written as the average275

sensitivity of fi to changes in the posterior given s. On the other hand, a neuron’s sensitivity276
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to feedback of beliefs, d fi
dπ

, depends on the sensitivity of fi to the average posterior (Methods).277

Because the expected value of a function is not equal to the function of an expected value,278

the neural response to a change in belief (related to the average posterior) might therefore be279

different from the average neural response to a change in the stimulus, in general. However, there280

is a subclass of encoding schemes, R, in which firing rates are linear with respect to mixtures281

of distributions over x. For those schemes the two expectations are therefore identical and we282

recover our earlier results for both task-dependent noise covariance (equation (8)) and structured283

choice probabilities (equation (9)) (Methods). We call these Linear Distributional Codes (LDCs).284

Examples of LDCs in the literature are given in the Discussion. We expect our results to degrade285

gracefully for codes that are nearly linear, or if the magnitude of the task-independent noise is286

small.287

Interactions between task-independent noise and task-dependent priors288

Although we assumed that noise ε arises from task-independent mechanisms, it is nonetheless289

shaped by task learning: task-independent noise in the likelihood interacts with a task-specific prior290

to shape variability in the posterior (Figure 5). This implies a source of task-dependent correlation291

in neural responses representing a posterior that will be present even if a subject’s beliefs (π) do292

not vary. This idea is reminiscent of circuit models of the influence of task context on recurrent293

dynamics, shaping the manifold along which neural activity may feasibly vary (Huang et al., 2019;294

Doiron et al., 2016).295

We again study the trial-by-trial variability in the posterior itself as opposed to the shape or296

moments of the posterior on any given trial. This can be formalized the covariance due to noise297

(ε) in the posterior density at all pairs of points xi, x j, i.e. Σ ≡ cov(pb(x1| . . .),pb(x2| . . .)). We298

show (Methods) that, to a first approximation, the posterior covariance is given by a product of the299

covariance of the task-independent noise in the likelihood, Σ
LH(xi,x j), and the brain’s prior over xi300

and x j:301

Σ(xi,x j) ∝ pb(xi)Σ
LH(xi,x j)pb(x j) . (10)

The effect of learning a task-dependent prior in equation (10) can be understood as “filtering”302

the noise, suppressing or promoting certain directions of variability in the space of posterior303

distributions. Differential correlations emerge from this process if variability in the dpb(x| . . .)/ds-direction304

is less suppressed than in other directions. Whether this is the case, and to what extent, depends305

on the interaction of s and x, an analytic treatment of which we leave for future work. Here, we306

present the results from two representative simulations, one in which the mean of x depends on s307

and one in which the covariance of x depends on s.308

In both simulations, we assume x to be two-dimensional with isotropic Gaussian likelihoods over309

s. The prior was learned by iteratively applying equation (3), including noise, until convergence.310

Noise was added by jittering the mean and covariance of each likelihood (Figure 5a). In the first311

simulation, the mean of the likelihood non-linearly depended on s (Figure 5a-d). Small variations312

in s around the boundary s = 0 primarily translated the posterior, resulting in a two-lobed dpb/ds313

structure (Figure 5d). After learning, the prior sculpted the noise such that trial-by-trial variance in314

posterior densities was dominated by translations in the dpb(x| . . .)/ds-direction (Figure 5c+e).315
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Figure 5. Sketch of how variable likelihoods both determine and interact with the shape of the
prior. a) Visualization of task-independent variability producing a range of likelihoods with s = 0
fixed. For the first simulation, s parameterizes the mean of the likelihood along the curve x̄(s).
b) After learning, the prior is extended along x̄(s), since it is the average of posteriors over all
s. c) Posteriors in the zero-signal case, given by the product of the likelihoods in (a) with the
prior in (b). d) The direction in this space corresponding to differential covariance in neurons is
the dpb/ds-direction, averaged over instances of noise. e) The fraction of variance in posteriors
(c) along the dpb/ds-direction. After learning, an larger fraction of the total variance is in the
dpb/ds-direction. Error bars indicate ±1 standard deviation across runs. f) Whereas in (a)–(e) the
external changes in s drove the mean of the likelihood, here we simulate changes to higher-order
moments by keeping the mean of x fixed but parameterizing its shape with s, which has a uniform
distribution in [−3,+3] (a.u.). Dashed inset indicates zoomed in plots in (g)–(i). g-j) as in (b)–(e)
but using the likelihoods in (f). Dashed borders indicate zoooming to the box outlined in (f). While
the overall magnitude of variance is smaller, the trend in (j) is analogous to (e): learning increases
the fraction of variance in the dpb/ds-direction.
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The intuition behind this first simulation is as follows. During learning, both uninformative s = 0 and316

informative s < 0 or s > 0 stimuli are shown. As a result, the learned prior (equalling the average317

posterior) becomes elongated along the curve that defines the mean of the likelihood (Figure 5b),318

which is also the direction that defines dpb/ds. After learning, if noise shifts the likelihood along this319

curve, then the resulting posterior will remain close to that likelihood because the prior remains320

relatively flat along that direction. In contrast, noise that changes the likelihood in an orthogonal321

direction will be “pulled” back towards the prior. Thus, multiplication with the prior preferentially322

suppresses noise orthogonal to dpb/ds. Applying the chain rule from equation (1), this directly323

translates to privileged variance in the differential or f′f′> direction in neural space.324

To investigate whether this result only holds when the mean of the likelihood depends on the325

stimulus, we next held the mean of the likelihood constant and assumed that the stimulus is326

encoded in its (co)variance (Figure 5f). Otherwise, likelihoods, the learning procedure, and noise327

were identical to the first simulation. Interestingly, we again found that the variance in the dpb/ds-328

direction was enhanced relative to other directions after learning (Figure 5i-j), again implying329

differential correlations in the neural responses.330

Note that whereas our results on variability due to the feedback of variable beliefs implied an331

increase in neural covariance along the f′f′>-direction over learning, the effect of “filtering” the332

noise induces task-related noise correlations but does not necessarily increase nor decrease333

variance (depending on the brain’s prior at the initial stage of learning).334

Empirical hypothesis tests335

To summarize, we have identified three signatures of Bayesian learning and inference: structured336

choice probabilities (equation (9)) and noise correlations (equation (8)) due to trial-by-trial feedback337

of beliefs π, and additional structure in noise correlations due to the “filtering” of task-independent338

noise. We emphasize that our results only describe how learning a task-specific prior changes339

these quantities, and makes no predictions about their structure before learning. Below we present340

five strategies to experimentally test our predictions and discuss their relation to existing empirical341

data.342

First, our results predict that the top-down component of choice probability should be proportional343

to the vector of neural sensitivities to the stimulus (Figure 6a). Indeed, such a relationship between344

CP and d′ was found by many studies (reviewed in Nienborg et al. (2012)). However, this is only345

a weak test since this finding can also be explained in a purely feedforward framework (Law and346

Gold, 2009; Haefner et al., 2013), so the remaining strategies focus on predictions for correlated347

variability, which cannot be accounted for with feedforward mechanisms.348

A second strategy involves holding the stimulus constant while switching between two comparable349

tasks that a subject is performing, altering their task-specific expectations. The difference in350

neural response statistics to a stimulus that is shared by both tasks will isolate the task-dependent351

component to which the our predictions apply (Figure 6b). In this vein, Bondy et al. (2018) recorded352

from neural populations in macaque V1 while the monkeys switched between different coarse353

orientation tasks. They found that the changes in noise correlations were well-aligned with d′d′>354

structure as predicted by equation (8) (Figure 6g). Note that a proportionality between covariance355
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Figure 6. Predictions of the probabilistic inference framework. Σ denotes covariation, and corr
denotes correlation. d′i is the normalized sensitivity of neuron i defined as d′i ≡ f ′i /σi. a) First
prediction, in agreement with classical feedforward encoding-decoding models with optimal linear
readout: neurons’ choice. probabilities should be proportional to their normalized sensitivity to the
stimulus. b) Second prediction, requiring top-down signals: the difference in covariance structure
between comparable tasks should be proportional to the difference in the product of tuning curve
derivatives for each task. By subtracting out intrinsic covariability, this is a less noise-prone
prediction than (c-e). c) Noise covariance induced by task-learning should be proportional to f′f′>.
d) As a control, the relationship in (c) should not hold for neural sensitivities d′ measured with
respect to other tasks’ f′ vectors. e) Summary of (c) and (d): rtask should fall off when computed
with respect to other hypothetical task directions (e.g. by predicting the f′ vector for other tasks from
tuning curves). f) Results of Rabinowitz et al. (2015) replotted, where it was found that the strength
of top-down ‘modulator’ connections is linearly related to d′. g) Bondy et al. (2018) isolated the
top-down, task-dependent component of noise correlations in macaque V1, and found a strong
relation between elements of this correlation matrix and neural sensitivities (r = 0.61, p < 0.001,
from original paper); similar to panel (b) divided by the standard deviation of neural responses.
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and f′f′ is equivalent to a proportionality between correlation and d′d′. Cohen and Newsome356

(2008) recorded from pairs of neurons in area MT of two monkeys and found that correlations also357

changed as if caused by variability in internal belief (see Box 2 in Lange and Haefner (2017)). A358

critical requirement for this approach is that the stimulus distribution at s = 0 is matched between359

the two different tasks so that “intrinsic” covariability can be subtracted out (Methods).360

A third, related, approach is to compare the amount of correlated variability in the current task’s361

direction with other “hypothetical” tasks as controls (Figure 6c-e). For instance in a coarse orientation362

discrimination task the covariability in the population response in the f′−direction of the actually363

performed task (e.g. vertical vs horizontal) should be larger than the variability in directions364

corresponding to other tasks (e.g. −45deg vs +45deg).365

A fourth strategy is to statistically isolate the top-down component of neural variability within a366

single task using a sufficiently powerful regression model. Rabinowitz et al. (2015) used this type367

of approach to infer the primary top-down modulators of V4 responses in a change-detection task.368

They found that the two most important short-term modulators were closely aligned with the f′−369

direction corresponding to the monkey’s task (data replotted in Figure 6f).370

Finally, our predictions can be tested through experimental manipulation of feedback pathways.371

In particular, we predict that the task-dependent f′f′> component of noise covariance should be372

reduced when feedback from decision areas – or areas mediating feedback signals – is blocked373

from arriving to the recorded sensory area.374

Inferring variable internal beliefs from sensory responses375

We have shown that internal beliefs about the stimulus induce corresponding structure in the376

correlated variability of sensory neurons’ responses (Figure 7a). Conversely, this means that the377

statistical structure in sensory responses can be used to infer properties of those beliefs.378

In order to demonstrate the usefulness of this approach, we used it to infer the structure of an379

existing model for which we know the ground truth (Haefner et al., 2016). The model discriminated380

either between a vertical and a horizontal grating (cardinal context), or between a −45deg and381

+45deg grating (oblique context). The model was given an unreliable (80/20) cue as to the correct382

context before each trial, and thus had uncertainty about the exact context. The model simulates383

the responses of a population of primary visual cortex neurons with oriented receptive fields that384

perform sampling-based inference over image features. Since the relevant stimulus dimension385

for this task is orientation, we sorted the neurons by preferred orientation. The resulting noise386

correlation matrix – computed for zero-signal trials – has a characteristic structure in qualitative387

agreement with empirical observations (Figure 7b) (Bondy et al., 2018).388

We found that the simulated neural responses had five significant principal components (PCs)389

when the true context was cardinal discrimination (Figure 7c-d). Knowing the preferred orientation390

of each neuron allows us to interpret the PCs as directions of variation in the model’s belief about391

the current orientation. For instance, the elements of the first PC (blue in Figure 7c) are largest for392

neurons preferring vertical and negative for those preferring horizontal orientation, indicating that393

there is trial-to-trial variability in the model’s internal belief about whether “there is a vertical grating394
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Figure 7. Inferring internal beliefs. a) Trial-to-trial fluctuations in the posterior beliefs about x imply
trial-to-trial variability in the mean responses representing that posterior. Each such ‘belief’ yields
increased correlations in a different direction in r. The model in (b-d) has uncertainty in each trial
about whether the current task is a vertical-horizontal orientation discrimination (task 1, blue) or
an oblique discrimination (task 2, yellow). b) Correlation structure of simulated sensory responses
during discrimination task. Neurons are sorted by their preferred orientation (based on (Haefner
et al., 2016)). c) Eigenvectors of correlation matrix (principal components) plotted as a function of
neurons’ preferred orientation. The blue vector corresponds to fluctuations in the belief that either
a vertical or horizontal grating is present (task 1), and the yellow corresponds to fluctuations in
the belief that an obliquely-oriented grating is present (task 2). See Methods for other colours. d)
Corresponding eigenvalues color-coded as in (c). Our results on variable beliefs (π) predict an
increase over learning in the eigenvalue corresponding to fluctuations in belief for the correct task,
while our results on filtering noise predict only a relative increase in the task-relevant eigenvalue
compared with variance in other tasks’ directions (e.g. if both blue and yellow decrease, but yellow
more so).

and not a horizontal grating” – or vice versa – in the stimulus, corresponding to the f′−axis of the395

cardinal task. Analogously, one can interpret the third PC (yellow in Figure 7c-d) as corresponding396

to the belief that a +45◦ grating is being presented, but not a −45◦ grating, or vice versa. This is397

the f′-axis for the wrong (oblique) task context, reflecting the fact that the model maintained some398

uncertainty about which was the correct task in a given trial. The remaining PCs in Figure 7c-d399

correspond to task-independent variability (see Supplemental Figure S3).400

Maintaining uncertainty about the task itself is the optimal strategy from the subject’s perspective401

given their imperfect knowledge of the world. When compared to perfect knowledge of context,402

it decreases behavioral performance. Behavioral performance is optimal only when the internal403

model learned by the subject exactly corresponds to the experimenter-defined one – an ideal404

which subjects should approach over the course of learning. An empirical prediction, therefore, is405

that eigenvalues corresponding to the correct task-defined stimulus dimension will increase with406

learning, while eigenvalues representing other tasks should decrease. Furthermore, the shape of407

the task-relevant eigenvectors should be predictive of psychophysical task-strategy. Importantly,408

they constitute a richer, higher-dimensional, characterization of a subject’s decision strategy than409

psychophysical kernels or CPs (Nienborg and Cumming, 2007) (Figure 7c).410
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Discussion411

We derived a novel analytical link between the two dominant frameworks for modeling sensory412

perception: probabilistic inference and neural population coding. Under the assumption that413

neural responses represent posterior beliefs, we showed how trial-to-trial variability in those beliefs414

induces empirically observable covariability in neural responses. Exploiting a fundamental self-consistency415

relationship underlying Bayesian learning, we were able to make specific predictions for the nature416

of neural and behavioral correlations in classic discrimination tasks with almost no assumptions417

about how beliefs are encoded in neural responses. Re-examining existing data we found evidence418

for these predictions, both supporting the hypothesis that neurons encode posterior beliefs and419

providing a novel explanation for previously puzzling empirical observations. Finally, we illustrated420

how measurements of neural responses can in principle be used to infer a subjects internal beliefs421

in the context of a task.422

Feedback and correlations423

Our results directly address several debates in the field on the nature of feedback to sensory424

populations. First, they provide a rationale for the apparent ‘contamination’ of sensory responses425

by top-down decision signals (Nienborg and Cumming, 2009; Wimmer et al., 2015; Ecker et al.,426

2016; Rabinowitz et al., 2015; Bondy et al., 2018; Haimerl et al., 2019): top-down signals communicate427

task-relevant expectations, not reflecting the decision per se but integrating information about428

the outside world (Nienborg and Roelfsema, 2015). Second, this feedback may be dynamic,429

reflecting the subject’s growing confidence within a trial and inducing choice probabilities that are430

the result of both feedforward and (growing) feedback components (Nienborg and Cumming, 2009;431

2014; Wimmer et al., 2015; Haefner et al., 2016). Third, these feedback signals also introduce432

correlated sensory variability that is information-limiting (Moreno-Bote et al., 2014) in tasks in433

which integrating some information may not be warranted, e.g. because individual stimuli and434

trials are temporally uncorrelated.435

We identified three distinct mechanisms by which correlated variability arises in a Bayesian inference436

framework. The first is neural variability in the encoding of a fixed posterior. This type of variability437

has previously been studied especially in neural sampling codes (Hoyer and Hyvärinen, 2003;438

Orbán et al., 2016; Echeveste et al., 2019; Bányai et al., 2019; Bányai and Orbán, 2019). Instead,439

we study variability in the posterior itself, which arises due to both task-dependent and task-independent440

mechanisms. The second mechanism is variability in task-relevant categorical belief (π), projected441

back to sensory populations during each trial. Under conditions consistent with threshold psychophysics,442

we showed that variable categorical beliefs induce commensurate choice probabilities and neural443

covariability in approximately the f′−direction assuming the subject learns optimal statistical dependencies.444

This holds for general distributional codes if noise is negligible, and for a newly-identified class445

of Linear Distributional Codes (LDCs) in the case of non-negligible noise. The third source446

of variability in neural responses is due to task-independent noise that interacts with a task-447

dependent prior. Although not solved analytically, we found in simulation that the task-dependent448

component of this variability likewise implies increased differential correlations after learning, though449

not necessarily increased differential covariance. The latter two mechanisms act through feedback:450

in one case there is dynamic feedback of a particular belief π, and in the other case there is task-451

dependent (but belief-independent) feedback that sets a static prior each trial, then interacts with452
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noise in the likelihood, analogous to models of “state-dependent” recurrent dynamics (Huang et al.,453

2019; Doiron et al., 2016; Ramalingam et al., 2013).454

Of these two mechanisms, empirical data on choice probabilities suggests that variability in belief455

(π) may dominate in many existing studies. Choice probabilities could in theory arise from a456

combination of three mechanisms: (i) feedforward causal effects of sensory neurons on behavior457

(Shadlen et al., 1996; Haefner et al., 2013; Pitkow et al., 2015), (ii) across-trial autocorrelation of458

both behavior and neural activity acting independently (Lueckmann et al., 2018), or (iii) feedback459

of belief or choice within a trial (Nienborg and Cumming, 2009; Wimmer et al., 2015; Haefner460

et al., 2016). Our analysis of variability in π is compatible with (iii), while variable likelihoods would461

be compatible with (i). Experimental work has suggested that both (i) and (ii) are insufficient to462

account for a large fraction of choice probability (Nienborg and Cumming, 2009; Wimmer et al.,463

2015; Lueckmann et al., 2018). Interpreted in our framework, this suggests that feedback of464

variable beliefs has a greater overall effect on the task-dependent statistics of neural activity than465

variable likelihoods, at least in those tasks and brain areas.466

Our results suggest that at least some of measured “differential” covariance may be usefully467

understood as near-optimal feedback from internal belief states or as the interaction between468

task-independent noise and a task-specific prior. In neither case is information necessarily more469

limited as the result of learning. In the first case, while feedback of belief (π) biases the sensory470

population, that bias may be accounted for by downstream areas (Kohn et al., 2016; Chicharro471

et al., 2017). In principle, these variable belief states could add information to the sensory472

representation if they are true (Lange and Haefner, 2017). In the second case, the noise in473

the f′ direction does limit information, but to the same extent as before learning; there is not474

necessarily further reduction of information by “shaping” the noise with a task-specific prior. For475

a fixed population size, it is covariance in the f′ direction, not correlation, that ultimately affects476

information.477

Posterior Coding478

Our focus on firing rates and spike count covariance is motivated by connections to rate-based479

encoding and decoding theory. We do not assume that they are the sole carrier of information480

about the underlying posterior pb(x| . . .), but simply statistics of a larger spatio-temporal space481

of neural activity, r (Dayan and Abbott, 2001). For many distributional codes, firing rates are482

only a summary statistic, but they nonetheless provide a window into the underlying distributional483

representation.484

Probabilistic Population Codes (PPCs) have been instrumental for the field’s understanding of the485

neural basis of inference in perceptual decision-making. However, they are typically studied in a486

purely feedforward setting assuming a representation of the likelihood, not posterior (Ma et al.,487

2006; Beck et al., 2008). In contrast, Tajima et al. (2016) modeled a PPC encoding the posterior488

and found that categorical priors bias neural responses in the f′ direction, consistent with our489

results (Tajima et al., 2016).490

The assumption that sensory responses represent posterior beliefs through a general encoding491

scheme agrees with empirical findings about the top-down influence of experience and beliefs on492
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sensory responses (von der Heydt et al., 1984; Lee and Mumford, 2003; Nienborg and Cumming,493

2014). It also relates to a large literature on association learning and visual imagery (reviewed494

in (Albright, 2012)). In particular, the idea of ‘perceptual equivalence’ (Finke, 1980) reflects our495

starting point that the very same posterior belief (and hence the same percept) can be the result496

of different combinations of sensory inputs and prior expectations. In a discrimination task, for497

instance, there are three distinct associations inducing correlations. First, showing the same input498

many times induces positive correlations between sensory neurons responding to the same input.499

Second, presenting only one of two possible inputs induces negative correlations between neurons500

responding to different inputs. Third, keeping the input constant within a trial induces positive501

auto-correlations. All three associations are directly reflected in the predicted (Figure 7b, Haefner502

et al. (2016)), and empirically observed neural responses (Bondy et al., 2018; Lueckmann et al.,503

2018).504

Our derivations implicitly assumed that the feedforward encoding of sensory information, i.e. the505

likelihood p(E|x), remains unchanged between the compared conditions. This is well-justified for506

lower sensory areas in adult subjects (Hensch, 2005), or when task contexts are switched on a507

trial-by-trial basis (Cohen and Newsome, 2008). However, it is not necessarily true for higher508

cortices (Li and DiCarlo, 2008), especially when the conditions being compared are separated by509

long periods of task (re)training (Bondy et al., 2018). In those cases, changing sensory statistics510

may lead to changes in the feedforward encoding, and hence the nature of the represented511

variable x (Ganguli and Simoncelli, 2014; Wei and Stocker, 2015).512

Outlook513

We introduced a general notation for distributional codes, R, that encompasses nearly all previously514

proposed distributional codes. Thinking of distributional codes in this way – as a map from515

an implicit space pb(x) to observable neural responses p(r) – is reminiscent of early work on516

distributional codes (Zemel et al., 1998), and emphasizes the convenience of computation, manipulation,517

and decoding of pb(x| . . .) from r rather than its spatial or temporal allocation of information per518

se (Fiser et al., 2010; Pouget et al., 2013; Gershman and Beck, 2016). Our results leverage519

this generality and show that properties of Bayesian computation might be identified in neural520

populations without strong commitments to its algorithmic implementation. Rather than assuming521

an approximate inference algorithm (e.g. sampling) then deriving predictions for neural data, future522

work might productively work in the reverse direction, asking what class of generative models (x)523

and encodings (R) are consistent with some data. As an example of this approach, we observe524

that the results of Berkes et al. (2011) are consistent with any LDC, since LDCs have the property525

that the average of encoded distributions equals the encoding of the average distribution, exactly526

as the authors reported (Berkes et al., 2011).527

Distinguishing between linear and nonlinear distributional codes is complementary to the much-debated528

distinction between parametric and sampling-based codes. LDCs include both sampling codes529

where samples are linearly related to firing rate (Hoyer and Hyvärinen, 2003; Buesing et al., 2011;530

Pecevski et al., 2011; Savin and Denève, 2014; Haefner et al., 2016; Shivkumar et al., 2018) as531

well as parametric codes where firing rates are proportional to expected statistics of the distribution532

(Anderson and Van Essen, 1994; Zemel et al., 1998; Sahani and Dayan, 2003; Vertes and Sahani,533

2018). Examples of distributional codes that are not LDCs include sampling codes with nonlinear534
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embeddings of the samples in r (Aitchson and Lengyel, 2016; Orbán et al., 2016; Echeveste et al.,535

2019) and parametric codes in which the natural parameters of an exponential family are encoded536

(Ma et al., 2006; Beck et al., 2008; 2013; Raju and Pitkow, 2016).537

Our results provide a normative justification for decision-related feedback that is aligned with v f ′.538

In the context of our theory, there are three possible deviations from our assumptions that can539

account for empirical results of a less-than-perfect alignment (Ni et al., 2018) – each of them540

empirically testable. First, it is plausible that only a subset of sensory neurons represent the541

posterior, while others represent information about necessary ‘ingredients’ (likelihood, prior), or542

carry out other auxiliary functions (Pecevski et al., 2011; Aitchson and Lengyel, 2016). Our543

predictions are most likely to hold among layer 2/3 pyramidal cells, which are generally thought544

to encode the output of cortical computation in a given area, i.e. the posterior in our framework545

(Felleman and Van Essen, 1991). Second, subjects may not learn the task exactly implying a546

difference between the experimenter-defined task and the subject’s ‘subjective” f′ direction for547

which our predictions apply. This explanation could be verified using psychophysical reverse548

correlation identifying the subject’s “subjective” f′ direction from behavioral data. Finally, some549

misalignment between f′ and decision-related feedback may be indicative of significant task-independent550

noise in the presence of a nonlinear distributional code, which could be tested by manipulating the551

amount of external noise in the stimulus.552

Much research has gone into inferring latent variables that contribute to the responses of neural553

responses (Cunningham and Yu, 2014; Archer et al., 2014; Kobak et al., 2016). Our predictions554

suggest that at least some of these latent variables can usefully be characterized as internal555

beliefs about sensory variables. We showed in simulation that the influence of each latent variable556

on recorded sensory neurons can be interpreted in the stimulus space using knowledge of the557

stimulus-dependence of each neuron’s tuning function (Figure 7). Our results are complementary558

to behavioral methods to infer the shape of a subject’s prior (Houlsby et al., 2013), but have the559

advantage that the amount of information that can be collected in neurophysiology experiments far560

exceeds that in psychophysical studies allowing for richer characterization of the subject’s internal561

model (Ruff et al., 2018).562

The detail with which internal beliefs can be recovered from the statistical structure in neurophysiological563

recordings is limited by both experimental and theoretical techniques. While much current research564

is aimed at developing those techniques and at characterizing the latent structure in the resulting565

recordings, how to make sense of the observed structures is less clear. Our work suggests a way566

to interpret this structure, and makes predictions about how it should change with task context and567

learning.568

21

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2020. ; https://doi.org/10.1101/081661doi: bioRxiv preprint 

https://doi.org/10.1101/081661
http://creativecommons.org/licenses/by/4.0/


Methods569

Optimal task-induced sensory expectations570

Following previous work (Olshausen and Field, 1996; Lee and Mumford, 2003; Kersten et al., 2004;571

Fiser et al., 2010), we assume that the brain has learned an implicit hierarchical generative model572

of its sensory inputs, pb(E|x), in which perception corresponds to inference of latent variables,573

x, conditioned on those inputs. The subscripted distributions pb(·) and pe(·) refer to the brain’s574

internal model and the experimenter’s “ground truth” model, respectively (Figure 4a).575

In the classic two-alternative forced-choice (2AFC) paradigm, the experimenter parameterizes the576

stimulus with a scalar variable s and defines category boundary which we will arbitrarily denote577

s = 0. If there is no external noise, the scalar s is mapped to stimuli by some function E(s), for578

instance by rendering grating images at a particular orientation. In the case of noise, below, we579

consider more general stimulus distributions pe(E|s).580

We assume that the brain does not have an explicit representation of s but must form an internal581

estimate of the category each trial, Ĉ, based on the variables represented by sensory areas,582

x (Shivkumar et al., 2018). From the “ground truth” model perspective, stimuli directly elicit583

perceptual inferences – this is why we include pe(x|E) as part of the experimenter’s model. In584

the brain’s internal model, on the other hand, the stimulus is assumed to have been generated585

by causes x, which are, in turn, jointly related to Ĉ. These models imply the following conditional586

independence relations (Figure 4a+b):587

pe(C,s,E,x) = pe(C)pe(s|C)pe(x|E)δ (E−E(s))
= pe(C)pe(s|C)pe(x|E(s))

pb(E,x,Ĉ) = pb(Ĉ)pb(x|Ĉ)pb(E|x) .

We assume the brain learns the joint distribution pb(x,Ĉ) that maximizes reward, or equivalently588

that best matches the ground-truth distribution pe(C,x) in expectation (Figure 4a). This entails a589

conditional distribution “decoding” Ĉ from x of the form590

pb(Ĉ|x) =
∫

s
pe(C|s)pe(E(s)|x)ds . (11)

We next derive the reciprocal influence of Ĉ on x (equation (2) in the main text) by applying Bayes’591

rule to equation (11):592

pb(x|Ĉ) =
pb(x)
pb(Ĉ)

∫
s
pe(C|s)pe(E(s)|x)ds

=
pe(C)

pb(Ĉ)

∫
s
pe(s|C)pe(x|E(s))ds

=
∫

s
pe(s|C)pb(x|E(s))ds

pb(x|Ĉ) = Epe(s|C)[pb(x|E(s))] ((2) restated)

The substitution of pb for pe in the third line follows from the fact that, even from the perspective of593

an external observer, pe(x|s) is the inference made by the brain about x induced by the stimulus594
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E(s). Hence, pe(x|s) is equivalent to pb(x|E(s)). The fractions pe(C)/pb(Ĉ) and pb(x)/pe(x) become595

one, assuming that the subject learns the correct categorical prior on C and a consistent internal596

model. We note that this distribution can be learned even if s is not directly observable by the brain,597

since its model has access to the true category labels if subjects are informed of the correct answer598

each trial, as well as to each individual posterior pb(x|s), as this is what we assume is represented599

by the sensory area. See the Supplemental Text for further discussion of this expression.600

As described in the main text we marginalize over the subject’s belief in the category, π = pb(Ĉ = 1),601

to get an expression for expectations on x given the belief (equation (3)). Unlike Ĉ, π is not a602

random variable in the generative model but the parameter defining the subject’s belief about the603

binary variable Ĉ. The resulting posterior on x, abbreviated in equation (4), is given by604

pb(x|E(s),π) =
pb(E(s)|x)pb(x|π)

pb(E(s)|π)
((4) restated)

= pb(E(s)|x)
[

πpb(x|Ĉ = 1)+(1−π)pb(x|Ĉ = 2)
πpb(E(s)|Ĉ = 1)+(1−π)pb(E(s)|Ĉ = 2)

]
, (12)

We assume that the category boundary s = 0 is itself equally likely to occur conditioned on each605

category (usually true by definition), but note that this is not a requirement that the categories are606

a priori equally likely. This simplifies equation (12) when conditioning on s = 0:607

pb(x|E(s = 0),π) =
pb(E(s = 0)|x)
pb(E(s = 0))

[
πpb(x|Ĉ = 1)+(1−π)pb(x|Ĉ = 2)

]
. (13)

Proof of approximate proportionality of derivatives of the posterior (5)608

Our first main result is the approximate proportionality in (5), restated here:609

d
ds

pb(x|E(s),π = 1/2)

∣∣∣∣
s=0

∼
∝

d
dπ

pb(x|π,E(s = 0))
∣∣∣∣
π=1/2

. ((5) restated)

We use π = 1/2 to denote the true prior over categories, which is often 50/50 but our results hold610

for biased pe(C) as well.611

Since s = 0 is fixed in the right-hand-side of (5), the total derivative with respect to π equals its612

partial derivative, assuming that there are no additional internal variables that are dependent on613

both x and π. In the left-hand-side of (5), the total derivative with respect to s includes two terms,614

one due to the direct effect of s on the posterior, and the other due to the mean dependence of π615

on s, since changes in s elicit changes in the subject’s beliefs:616

d
ds

pb(x|E(s))
∣∣∣∣
s=0

=
∂

∂ s
pb(x|E(s),π = 1/2)

∣∣∣∣
s=0

+
∂π

∂ s
∂

∂π
pb(x|E(s = 0),π)

∣∣∣∣
π=1/2

.

Below, we will replace pb(x|E(s),π = 1/2) with pb(x|E(s)) to reduce notational clutter since π = 1/2617

corresponds to marginalizing over categories with the true prior. The second partial derivative618

term in the previous equation is equal to the right-hand-side of (5), scaled by ∂π/∂ s, and hence619

does not affect the overall proportionality in (5). To prove the approximate proportionality in (5),620

we therefore need only prove proportionality in the partial derivatives:621
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∂

∂ s
pb(x|E(s))

∣∣∣∣
s=0

∼
∝

∂

∂π
pb(x|π,E(s = 0))

∣∣∣∣
π=1/2

. (14)

Using a small ∆s finite-difference approximation, we rewrite t the left-hand-side of (14) as622

∂

∂ s
pb(x|E(s))

∣∣∣∣
s=0
≈ 1

2∆s
[pb(x|E(s =+∆s))−pb(x|E(s =−∆s))] . (15)

While this is an approximation to the “true” derivative, it is usually a good one based on theoretical623

reasons (range of s small in the threshold regime of psychophysical tasks) and empirical observations624

(Bondy et al., 2018).625

Next, consider the right-hand-side of (14) using the expression for the posterior conditioned on626

s = 0 (equation (13)). The partial derivative of this posterior with respect to the belief π is627

∂

∂π
pb(x|π,E(s = 0)) =

pb(E(s = 0)|x)
pb(E(s = 0))

[
pb(x|Ĉ = 1)−pb(x|Ĉ = 2)

]
.

Applying the self-consistency constraint implied by learning (i.e. substituting in equation (2) to the628

terms inside the brackets), this becomes629

∂

∂π
pb(x|π,E(s = 0)) =

pb(E(s = 0)|x)
pb(E(s = 0))

[
Epe(s|C=1)[pb(x|E(s))]−Epe(s|C=2)[pb(x|E(s))]

]
.

Re-arranging terms, we arrive at630

∂

∂π
pb(x|π,s = 0) =

pb(x|E(s = 0))
Epe(s) [pb(x|E(s))]

[
Epe(s|C=1)[pb(x|E(s))]−Epe(s|C=2)[pb(x|E(s))]

]
, (16)

where we have used the identity pb(x) = Epe(s) [pb(x|E(s))] to write the denominator of the fraction631

outside the brackets as expectations over s. This identity is valid because we assumed subjects632

have completely learned the task, so the self-consistency rule holds that the prior pb(x) equals the633

average posterior seen in the task (Dayan and Abbott, 2001).634

Having re-arranged terms, we must now establish conditions under which (15) and (16) are635

proportional. While they appear similar by inspection, they are not proportional in general because636

so far we have placed no restrictions on the experimenter’s distribution of stimuli pe(s). We637

therefore next consider the special case of sub-threshold tasks. One way to formalize this mathematically638

is by taking the limit of (16) as pe(s) approaches a Dirac delta around s= 0, as this appears to result639

in agreement between the individual terms of (16) and (15). However, in this limit (16) itself goes640

to zero (indeed, it should be expected that beliefs are irrelevant in a task that has zero variation in641

stimuli).642

This suggests an approximate solution by breaking the problem into two limiting processes: one643

in which the distribution of stimuli within each category concentrates on some ±∆s, and a second644

in which ∆s gets small (but does not reach zero). Supplemental Figure S1 visualizes these two645

steps. To realize the first limit, we set646

pe(s|C = 2) = (1−p0)δ (s−∆s)+p0δ (s−0), (17)
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and likewise for C = 1 and −∆s. We include the δ (s− 0) term to ensure that zero-signal stimuli647

are always included with probability p0, otherwise evaluating (16) at s = 0 would not be possible in648

practice. Marginalizing over categories, the full distribution of stimuli becomes649

pe(s) =
(1−p0)

2
[δ (s−∆s)+δ (s+∆s)]+p0δ (s−0) . (18)

Substituting equations (17) and (18) into (16) simplifies the expectations. First, the terms inside650

the brackets in (16) goes to651 [
Epe(s|C=1)[pb(x|E(s))]−Epe(s|C=2)[pb(x|E(s))]

]
= (1−p0) [pb(x|E(s =−∆s))−pb(x|E(s =+∆s))] ,

which matches the corresponding term in (15) to the extent that ∆s is small enough to approximate652

the derivative df
ds . Thus, the extent to which (16) is proportional to (15) depends only on the extent653

to which the first term in the right-hand-side of (16) is constant, or equivalently whether pb(x|E(s =654

0)) approximately equals Epe(s) [pb(x|E(s))]. Considering the special case of stimulus distributions655

given in (17) and (18), this near-equality condition holds as the probability of true zero-signal656

stimuli (p0) grows, or as the category differences (∆s) shrink: an approximation to sub-threshold657

psychophysics conditions.658

Taken together, this establishes the approximate proportionality in (14), which in turn concludes659

the proof of (5), in the special case of sub-threshold psychophysics. See the Supplemental Text660

for further discussion of the applicability and interpretation of these limits. �661

Encoding the posterior in neural responses662

Our above derivations considered perturbations of an approximate Bayesian observer’s posterior663

over their internal variables, pb(x|E(s),π). We next link these computational-level changes in the664

posterior to predictions for observable changes in neural firing rate. “Posterior coding” hypothesizes665

that the (possibly high-dimensional) posterior pb(x|E(s),π) is encoded in the spiking pattern of a666

population of neurons over some time window. We do not restrict the space of neural responses667

r to total spike counts or average spike rates, but instead consider r on a single trial to live in a668

high-dimensional “spatiotemporal” space, i.e. an N×B array of spike counts for all N neurons in a669

population resolved into B fine-timescale bins (Dayan and Abbott, 2001). That is, r ∈ RN×B, where670

rib is the spike count of neuron i at time b. This definition subsumes both “spatial” and “temporal”671

codes, a distinction that lies at the center of some debates over the neural representation of672

distributions (Fiser et al., 2010; Pouget et al., 2013; Gershman and Beck, 2016).673

We define distributional codes of the posterior as any encoding scheme R where the posterior674

distribution on x is sufficient to determine the neural response distribution over the range of675

possible stimuli3. Formally, we say676

p(r|s,π) = R[pb(x|E(s),π)](r), (19)

where R is a higher-order function that maps from distributions over x to distributions over r.677

(One may equivalently think of R either as a deterministic higher-order map as we have written678

here, or as a stochastic map from distributions on x directly to neural activity patterns r.) Our679

only restrictions on x and R are that pb(x| . . .) must be sufficiently wide, and R must be sufficiently680

3Note that this excludes the possibility of separately encoding the likelihood and the prior.
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smooth over the relevant range of stimulus values, so that the derivatives and linear approximations681

throughout are valid. A second restriction on x and R is that the dominant effect of s on r must be682

in the mean firing rates rather than their higher-order moments of r. While this is a theoretically683

complex condition to meet involving interactions between s, x, and R, it is easily verified empirically684

in a given experimental context: if changes to s primarily influence the mean spike count, it685

is irrelevant whether these changes coded for the mean, variance, or higher-order moments686

of pb(x| . . .). If the space of r is the full “spatiotemporal” space of neural activity patterns, this687

definition encompasses all previously proposed parametric (Beck et al., 2013; Raju and Pitkow,688

2016; Tajima et al., 2016; Vertes and Sahani, 2018), and sampling-based (Hoyer and Hyvärinen,689

2003; Buesing et al., 2011; Savin and Denève, 2014; Orbán et al., 2016; Haefner et al., 2016;690

Aitchson and Lengyel, 2016) encoding schemes as special cases, among others. However, it691

excludes sub-populations of neurons in which only the likelihood or prior, but not the posterior, is692

encoded (Ma et al., 2006; Beck et al., 2008; Walker et al., 2019).693

Tuning curves as statistics of encoded distributions694

The total spike count of neuron i in terms of r is a function of r that sums responses over time695

bins:696

spike counti ≡ Si(r) =
B

∑
b=1

rib .

In an encoding model defined as in equation (19), each neuron’s tuning curve is thus defined by697

the expectation of Si at each value of the stimulus s:698

fi(s) = Er∼R[pb(x|E(s))][Si(r)] . (20)

The slope of this tuning curve, d fi
ds , is given by the chain rule:699

d fi

ds
=

〈
d fi

pb(x|E(s))
,
dpb(x|E(s))

ds

〉
, ((1) restated)

where the inner product is taken between two functions, since derivatives were taken with respect700

to the distribution pb(x|E(s),π). Equation (1) shows how we use smoothness and linearization701

assumptions to decouple our analysis of changes in posteriors (e.g. dpb/ds) from their effect702

on mean firing rates under arbitrary distributional encodings (e.g. d fi/dpb). The proportionality703

between dpb/ds due to changing stimuli and dpb/dπ due to feedback of beliefs (equation (5))704

implies an analogous proportionality in neural responses:705

df
dπ

∣∣∣∣ s=0
π=1/2

∼
∝

df
ds

∣∣∣∣ s=0
π=1/2

. ((6) restated)

Implication for top-down component of choice probability706

We assume the subject’s choice is based on their posterior belief in the stimulus category, i.e.707

value of π. Conditioning neural responses on choice is then equivalent to conditioning on the sign708

of π − 1/2 (if there is an additional stage of randomness between belief π and behavioral choice,709

what follows will remain true up to a proportionality, (Chicharro et al., 2017)).710
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Let CTAi be the “choice triggered average” of neuron i, defined as the difference in mean response711

to choice 1 and choice 2. To isolate top-down effects, consider the noiseless case where neural712

responses depend exclusively on s (which is fixed) and π (which is varying). We then write CTA713

as the difference in expected neural response between the π > 1/2 and π < 1/2 cases:714

CTAi ≡ Eπ>1/2[ fi(s = 0,π)]−Eπ<1/2[ fi(s = 0,π)] .

For small variability in π, this can be approximated linearly:715

CTAi ≈
(

fi(s = 0,π = 1/2)+∆π
d fi

dπ

)
−
(

fi(s = 0,π = 1/2)−∆π
d fi

dπ

)
= 2∆π

d fi

dπ
.

Substituting in the proportionality df/dπ
∼
∝ df/ds (6), it follows that CTAi

∼
∝ f ′i . Dividing both sides716

of this proportionality by the standard deviation of the neuron’s response, σi, and incorporatig the717

fact that CPi− 1
2 ∝ CTAi/σi (Haefner et al., 2013; Pitkow et al., 2015), we arrive at the following718

equation for the top-down component of choice probability after learning:719

CPi−
1
2

∝ f ′i /σi ≡ d′i , ((9) restated)

where d′ is the “d-prime” sensitivity measure from signal detection theory (Green and Swets,720

1966).721

Implication for task-dependence of noise covariance722

Consider any scalar variable a that linearly shifts neural responses in an arbitrary direction u,723

above and beyond all of the other factors influencing the population (denoted “. . .”):724

f(. . . ,a) = f(. . .)+au+noise.

When a varies from trial to trial, it adds a rank-1 component to the covariance matrix:725

Σ = Σ
intrinsic +var(a)uu>,

where Σ
intrinsic is the covariance due to all other factors, i.e. due to neural noise and variability in726

any of the terms in “. . .”.727

It follows that variability in the posterior along dpb/ds manifest as covariability among neurons in728

the f′f′> direction (Lange and Haefner, 2017). The noise covariance structure due to var(π) is729

predicted to be730

Σ≈ Σ
intrinsic +α

2var(π)f′f′>︸ ︷︷ ︸
Σ

belief

. (21)

Σ
intrinsic may be thought of as neural noise above and beyond variability in belief. Σ

belief is the731

rank-one component in the f′f′> direction due to feedback of variable beliefs, and α is the proportionality732

constant from (5).733
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We call two tasks ‘comparable’ when they agree both in the magnitude of their top-down effects734

(α2var(π)) and in their intrinsic response covariance (Σintrinsic), as can reasonably be expected, for735

instance, in rotationally symmetric coarse discrimination tasks where all that changes between the736

tasks is the orientation (Bondy et al., 2018) or motion direction (Cohen and Newsome, 2008) of the737

discrimination boundary while the zero-signal stimulus stays the same. In that case subtracting738

the covariance matrices from each task yields the following prediction (Figure 6b):739

∆Σ≡ ΣA−ΣB = α
2var(π)(f′Af′>A − f′Bf′>B ),

having cancelled out the task-independent term Σ
intrinsic.740

Note that two fine discrimination tasks (e.g. orientation discrimination around the vertical and the741

horizontal axes, respectively) are not necessarily ‘comparable’ since the two tasks differ in their742

zero-signal stimulus (a vertical and a horizontal grating, respectively), which may yield different743

baseline covariability, Σ
intrinsic.744

Inferring the internal model745

Complex tasks (e.g. those switching between different contexts), or incomplete learning (e.g.746

uncertainty about fixed task parameters), will often induce variability in multiple internal beliefs747

about the stimulus. Assuming that this variability is independent between the beliefs, we can write748

the observed covariance as Σ ≈ Σ
0 +∑k λ (k)u(k)u(k)>. Here, each vector u(k) corresponds to the749

change in the population response corresponding to a change in internal belief k. The coefficients750

λ (k) are proportional to the variance of the trial-to-trial variability in belief k, as in var(π) above, and751

Σ
0 represents all task-independent covariance.752

The model in our proof-of-concept simulations has been described previously (Haefner et al.,753

2016). In brief, it performs inference by neural sampling in a linear sparse-coding model (Olshausen754

and Field, 1996; Hoyer and Hyvärinen, 2003; Fiser et al., 2010). The prior is derived from an755

orientation discrimination task with two contexts – oblique orientations and cardinal orientations756

– that is modeled on an analog direction discrimination task (Cohen and Newsome, 2008). We757

simulated the responses of 1024 V1 neurons whose receptive fields uniformly tiled the orientation758

space. Each neuron’s response corresponds a set of samples from the posterior distribution over759

the intensity of its receptive field in the input image. We simulated zero-signal trials by presenting760

white noise images to the model. The eigenvectors not described in the main text correspond to761

stimulus-driven covariability, plotted in Figure S3 for comparison.762

Task-independent variability in the posterior763

We consider three potential sources of task-independent noise in posteriors: first, there are764

additional “high level” variables in I that may be probabilistically related to x but are not task-relevant.765

Just as variability in π induces variability in pb(x|E(s),π), variability in these other internal states766

may induce variability in the posterior. Second, there may be measurement noise in the observation767

of E or noise in the neurons afferent to those representing x. Third, the stimulus itself may be768

stochastic by design, drawn according to some pe(E|s). We model these sources of variability by769

three types of noise, ε = {εI,εL,εE} corresponding to “internal state” noise, “likelihood” noise, and770

stimulus noise respectively. We assume that the all noise sources are unaffected by task learning771

28

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2020. ; https://doi.org/10.1101/081661doi: bioRxiv preprint 

https://doi.org/10.1101/081661
http://creativecommons.org/licenses/by/4.0/


or task context and are independent of both s and π.772

By approximating the joint effect of π and εI on the density of x as multiplicative, the full posterior773

decomposes as follows:774

pb(x|s,π;ε) =
pb(E(s,εE)|x;εL)pb(x|εI,π)pb(εI)pb(π)

p(s,π)p(ε)
∝ pb(E(s,εE)|x;εL)︸ ︷︷ ︸

(i)

pb(x|π)︸ ︷︷ ︸
(ii)

pb(x;εI)︸ ︷︷ ︸
(iii)

.

The first term (i) is the “noisy likelihood” conditioned on the noisy stimulus E(s,εE). The second775

term (ii) is the task-dependent component of the prior studied above. The third term (iii) captures776

the influence due to other internal variables besides π.777

The two noise terms, (i) and (iii), may be combined into a single term. With some slight abuse of778

notation, we can replace pb(E(s,εE)|x;εL) with pb(s|x;εL,εE) so that the ε terms appear together.779

Combining terms, one can thus interpret both (iii) and (i) as noise in the likelihood, despite one780

being feed-back and the other being feed-forward:781

pb(x|s,π;ε) ∝

(i),(iii)︷ ︸︸ ︷
pb(s|x;εL,εE)pb(x;εI)

(ii)︷ ︸︸ ︷
pb(x|π)

∝ pb(s|x;ε)pb(x|π) .

This motivates our discussion only of “noisy likelihoods” in the main text – it implicitly includes782

stimulus noise, feedforward noise, and noise due to variable internal states besides π.783

Variable beliefs in the presence of noise784

Analogous to equation (2) in the main text, learning the task in the the presence of noise implies785

learning a prior that is equal to the average of (noisy) posteriors seen in the task:786

pb(x|Ĉ = c) = Eε

[
Epe(s|C=c)[pb(x|s;ε)]

]
.

Paralleling the deriviation of (3), this implies a prior conditioned on the graded belief π of the form787

pb(x|π) = Eε

[
πEpe(s|C=2)[pb(x|s;ε)]+(1−π)Epe(s|C=1)[pb(x|s;ε)]

]
, (22)

which is identical to (3), but with the average posteriors further “blurred” by the noise.788

The expected spike count of neuron i, denoted fi, previously contained only an expectation over789

neural responses r; now we simply add an outer expectation over ε:790

fi(s,π) = Eε

[
Er∼R[pb(x|s,π;ε)] [Si(r)]

]
= Eε [ fi(s,π,ε)] (23)

where Si(r) is again simply counts the spikes of neuron i. The second line defines a new three-argument791

function fi(s,π,ε) which is the expected spike count of neuron i for fixed s, π, and ε.792

We again consider the case of zero-signal stimuli and the relationship between df
ds and df

dπ
. As793

before, the population’s sensitivity to the stimulus, df
ds , is approximated by the average difference794
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between f(+∆s) and f(−∆s) (analogous to equation (15) which estimated dpb(x|...)
ds ):795

∂ f
∂ s

∣∣∣∣
π=1/2

≈ 1
2∆s

( fi(+∆s, 1/2)− fi(−∆s, 1/2))

=
1

2∆s
Eε [f(+∆s, 1/2,ε)− f(−∆s, 1/2,ε)] . (24)

Note that by reparameterizing pe(E|s) as the deterministic function E(s,εE), we are able to pass796

the derivative with respect to s through expectations over ε, as in the “reparameterization trick”797

(Rezende et al., 2014).798

We again apply the chain rule to express the population’s sensitivity to beliefs π in the presence799

of noise as an expectation over an inner product:800

∂ f
∂π

∣∣∣∣
s=0

= Eε

[〈
∂ f

∂pb(x|s = 0,π;ε)
,
∂pb(x|s = 0,π;ε)

∂π

〉]
. (25)

From (22), we have801

∂pb(x|s = 0,π;ε)

∂π
=

pb(x|s = 0;ε)

pb(x;ε)
Eε ′
[
Epe(s′|C=1)[pb(x|s′;ε

′)]−Epe(s′|C=2)[pb(x|s′;ε
′)]
]

. (26)

Following our proof of (5), we again assume the case of narrow stimulus distributions (equation802

(17)) in the sub-threshold regime (so ∆s is small). The outer expectation over ε in (25) only affects803

the term pb(x|s=0;ε)
pb(x;ε) in (26), and this term again becomes negligible in the sub-threshold limit. The804

inner expectation over ε ′ remains, however.805

Comparing (24) with (25)-(26), the effect of noise becomes apparent: while ∂ f
∂ s has the form of an806

expectation of the difference of f evaluated across noise values, ∂ f
∂π

has the form of f evaluated on807

the difference of expectations. Unlike in the noiseless case, these are no longer proportional in808

general.809

However, we observe that proportionality between (24) and (25) still holds for a restricted class810

of distributional encoding schemes R, namely those distributional codes for which firing rates are811

linear in mixtures of distributions. Let p3(x) be a mixture of two distributions, αp1(x)+(1−α)p2(x),812

0 ≤ α ≤ 1. Formally, we define “Linear Distributional Codes” (LDCs) as all codes for which the813

following holds for all p1 and p2:814

fi(α)≡ Er∼R[p3(x)][Si(r)] = αEr∼R[p1(x)][Si(r)]+(1−α)Er∼R[p2(x)][Si(r)] . (27)

LDCs have the property that the expectation over ε pass through the function f(). Combined with815

(24)-(26), this implies that in cases with significant task-independent noise, only linear distributional816

codes will have the property that df
ds
∼
∝

df
dπ

, and hence make all the same predictions for data817

described in the main text, such as the emergence of both differential correlations and a top-down818

component of choice probabilities proportional to neural sensitivities over learning. �819

Interactions between task-independent noise and task-dependent priors820

Throughout this section, we will fix s = 0 and π = 1/2 to isolate the effects of ε in “zero-signal”821

conditions. We will also assume that x is discrete so that we can use finite-length vectors of822
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probability mass rather than probability density functions, but this is only for intuition and notational823

convenience.824

Above, we used the chain rule of derivatives to write neurons’ sensitivity to various factors in terms825

of their sensitivity to the posterior density, df/dpb(x| . . .). To a first approximation, the same trick826

can be applied to write the covariance of neural responses in terms of their sensitivity to pb(x| . . .)827

and the covariance in the posterior mass itself due to task-independent noise (ε):828

Σ
ε
i j ≈ ∇p f>i Σp∇p f j . (28)

The inner term, Σp, is the covariance of the elements of the posterior pb(x| . . .) at pairs of points829

x1, x2 due to ε (see Supplemental Text for further discussion of this term). The term ∇p fi is the830

gradient of neuron i’s firing rate with respect to the elements of pb(x| . . .).831

Recall that the noisy posterior, pb(x|s,π;ε), can be written with all noise terms in the likelihood, i.e.832

pb(x|π)pb(s|x;ε) (up to constants). Because of this, the prior may be pulled out of Σp as follows (we833

drop π = 1/2 here to reduce clutter):834

Σp(x1,x2) = Eε

[(
pb(x1|s = 0;ε)−Eε ′ [pb(x1|s = 0;ε

′)]
)(

pb(x2|s = 0;ε)−Eε ′ [pb(x2|s = 0;ε
′)]
)]

∝ Eε

[(
pb(x1)pb(s = 0|x1;ε)−Eε ′ [pb(x1)pb(s = 0|x;ε

′)]
)(

pb(x2)pb(s = 0|x2;ε)−Eε ′ [pb(x2)pb(s = 0|x;ε
′)]
)]

= pb(x1)pb(x2)Eε

[(
pb(s = 0|x1;ε)−Eε ′ [pb(s = 0|x;ε

′)]
)(

pb(s = 0|x2;ε)−Eε ′ [pb(s = 0|x;ε
′)]
)]︸ ︷︷ ︸

Σ
LH
p

.

In the second line, we absorbed pb(s = 0) terms into a proportionality constant since we are835

primarily interested in the shape of Σp. This can be rewritten in matrix notation as836

Σp ∝ diag(pb(x))ΣLH
p diag(pb(x)) , ((10) restated))

where Σ
LH
p is the covariance of the likelihood with s= 0 and is task-independent. The prior, pb(x|π =837

1/2)), is task-dependent. Equation (10) thus gives, to a first approximation, an expression for how838

noise in the likelihood is sculpted by learning: the “intrinsic” covariance in the likelihood, which839

is present before learning, is pre- and post-multiplied by a diagonal matrix of the task-dependent840

prior mass vector.841

One way to reason about (10) is by considering its eigenvector decomposition. For instance,842

differential correlations are introduced only to the extent that the relative variance in the dpb
ds843

direction is increased after left- and right-multiplying the intrinsic noise (ΣLH
p ) by the diagonal matrix844

of prior probabilities. It is nontrivial, however, to state this in terms of conditions on x, s, or R, which845

we leave as a problem for future work.846

Figure 5 was created by simulating a discretized 2D space. The likelihood functions were 2D847

Gaussians parameterized by s, so there were five degrees of freedom for each likelihood function:848

{µ1,µ2,σ1,σ2,c}, where σ2
i is the variance along dimension i and c is the correlation. In the first849

simulation, the means were parameterized by a smooth (cubic) function of s,850

µ1(s) = s, µ2(s) = (s+ s3)/10,

while the other three parameters did not depend on s. In the second simulation, means were851
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constant while the variances and correlation were parameterized by s as follows:852

σ(s) = 1+ | tanhs|/2, c(s) = 0.9tanhs.

In both cases, pe(s) was set to a uniform distribution in [−3,+3]. Gaussian noise with σ = 1/2853

was added to the means, and noise was added to the covariance of the likelihood by adding to854

it a random covariance matrix whose diagonal (variances) was exponential random variables and855

whose correlation was a tanh function of a Gaussian random variable. Starting with a uniform prior856

over this space, learning consisted of drawing a large number of random likelihoods (randomizing857

both s and ε) to estimate the average posterior, then the prior was updated to equal the average858

posterior, mixed with 1% of uniform density added everywhere for regularization. This process859

was then run to convergence in 50 independent runs of each simulation. To measure the change860

in covariance of the posterior density itself along dpb/ds, we compared the first and last iteration,861

which have the same statistics of variable likelihoods but different priors. We plotted the change862

in relative variance along dpb/ds in Figure 5e,j, defined as863

u>Σpu
Trace(Σp)

,

where u is the unit vector pointing in the dpb/ds-direction. We computed dpb/ds separately before864

and after learning (Figure 5d+i show dpb/ds after learning) by drawing a large number of random865

posteriors and taking the difference of their average at s =+.05 and s =−.05.866
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Supplemental Figures1101
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Figure S1. Visualizing the limiting process(es) of stimulus distributions as defined by equations
(17) and (18). a) Initially, the distribution on stimuli may be wide, here illustrated as a Gaussian
that is split by the two categories. b) Equation (17) considers the case where each category goes
to a Dirac delta around some ±∆s, plus a delta at zero. c) As the magnitude of ∆s gets small, the
approximation in (5) gets better. As discussed in the methods, this limit may not be taken fully to
∆s→ 0.

a) b) c)

d)
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Figure S2. a) Simple generative model simulated in b-d. x is a scalar drawn from a Gaussian
around ±µx (matching the sign of C), and the stimulus s is drawn from a Gaussian around x. b)
The prior on x is a mixture of two Gaussians. Colors correspond to different values of µx. c)
Derivatives of the posterior with respect to s. d) Derivatives of the posterior with respect to π.
The match to c improves as µx gets closer to 0, which simulates changes to the learned model as
stimulus categories µx draw closer together (as in Figure S1c).
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Figure S3. Principal components of model neurons due to only stimulus-driven correlations. Note
that the sinusoidal eigenvectors at the same frequency have indistinguishable eigenvalues and
hence form quadrature pairs, implying circular symmetry with respect to neurons’ tuning. There is
no more variance along the vertical-horizontal preferred orientation axis than then oblique axis.
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Supplemental Text1102

Note on the circularity of the ideal learning condition1103

Equation (2) defines the optimal task-prior (left hand side) in terms of the average posterior seen1104

in the task (right hand side). Each posterior is, circularly, defined in terms of the prior:1105

pb(x|Ĉ) = Epe(s|C)[pb(x|s)]

= Epe(s|C)

[
∑
Ĉ′

pb(x|Ĉ′)pb(s|x)
pb(s)

]
.

One interpretation is that equation (2) describes the end result of learning a task in terms of a1106

fixed-point relation where the average posterior in the task is equal to the prior, but it does not1107

prescribe how to arrive at such a prior.1108

A straightforward method to learn such a prior is to iterate until convergence, where in each step1109

of the iteration, the “new” prior is defined as the average posterior under inferences made using1110

the “old” prior:1111

p(t+1)
b (x|Ĉ) = Epe(s|C)

[
pb(s|x)
p(t)b (s)

∑
Ĉ′

p(t)b (x|Ĉ′)pb(Ĉ′)

]
(S1)

where we have assumed that it is only the prior influcence of the category on the sensory representation1112

pb(x|Ĉ), not the sensory generative procedure pb(s|x) that changes with learning. It follows that1113

the the full prior on x p(t+1)
b (x) is also defined iteratively as1114

p(t+1)
b (x) = Epe(s,C)

[
pb(s|x)p(t)b (x)

p(t)b (s)

]
. (S2)

This is the iterative learning procedure used in our simulations for Figure 5.1115

The iterative procedure defined by equation (S2) has a fixed point in which the marginal likelihood1116

on stimuli pb(s) equals the experimental distribution of stimuli pe(s), as we now show. A fixed point1117

is reached when there is no change in the prior from one iteration to the next, so that p(t+1)
b (x)
p(t)b (x)

= 1.1118

Dividing both sides of equation (S2) by p(t)b (x) gives1119

p(t+1)
b (x)

p(t)b (x)
= Epe(s,C)

[
pb(s|x)p(t)b (x)

p(t)b (s)p(t)b (x)

]

1 = ∑
C

pe(C)
∫

s
pe(s|C)

pb(s|x)
p(t)b (s)

ds

1 = ∑
C

pe(C)
∫

s

pe(C|s)pe(s)
pe(C)

pb(s|x)
p(t)b (s)

ds

1 =
∫

s
pb(s|x)

pe(s)

p(t)b (s)
∑
C

pe(C|s)ds

1 = Epb(s|x)

[
pe(s)

p(t)b (s)

]
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If the marginal distribution of s in the brain’s model at time t equals the experimenter’s distribution1120

on s, then the term inside the expectation is 1 and hence the brain has correctly converged to a1121

model of the task.1122

What we have shown here is that the apparent circularity of equation (2) is in fact a feature1123

of any “well-calibrated” probabilistic model. The fixed-point derivation above shows that when1124

the marginal distribution of stimuli under the brain’s (implicit) generative model matches the true1125

distribution of stimuli defined by the experimenter, the process has converged and the relation in1126

(2) will hold.1127

Note on relaxing the limits on the stimulus distribution1128

Our proof of (5) required a set of two limits in which (1) the stimulus distribution approaches a1129

mixture of Dirac deltas at s = 0 and s = ±∆s, and (2) the spread of these components becomes1130

small, i.e. ∆s gets small (but must not reach 0). These conditions might be considered extreme1131

even for threshold psychophysics. In principle, this limits the applicability of our result whenever1132

the empirical stimulus distribution has appreciable variance. In practice, however, three factors aid1133

in the generality of our results. First, the stimulus distribution may be wider in the case of Linear1134

Distributional Codes (LDCs) without affecting affecting our results for the same reason that LDCs1135

make the same predictions in the presence of external noise. However, this would additionally1136

require f′ to be defined as the difference in average neural response to all stimuli in each category,1137

by analogy to equation (23). As stated in the main text, our exact results for LDCs can be expected1138

to degrade smoothly for nearly-linear codes.1139

Second, we have considered only the case where the forms a binary categorical judgment about,1140

rather than an intermediate continuous estimation of the stimulus s. Even in two-alternative1141

forced-choice tasks, subjects may internally categorize stimuli according to more than two subjective1142

categories, for instance distinguishing “faintly rightward” separately from “strongly rightward.” To1143

the extent that subjects internally make fine categorical distinctions such as this, our result for1144

concerns categorical beliefs about “faint” categories near the s = 0 boundary. This necessarily1145

involves a small range of values of s around s = 0, as in the limiting case our proof requires.1146

Another way to say this is that forming a continuous internal estimate of s that then informs the1147

category judgment could be formalized as a limit where the number of fine-grained categories1148

grows large. It is, in fact, unsurprising that fluctuating internal continuous estimates of s elicit1149

differential correlations. The limit required for our result for variable categorical beliefs can be1150

interpreted as approaching continuous estimates around s = 0.1151

The third factor regarding generality is that the brain cannot represent arbitrary distributions, but1152

is necessarily restricted to some finite approximation (whether by finitely many parameters in a1153

parametric approximation, or finitely many values of x in a sampling-based approximation). Any1154

family of approximations is a subspace of all possible distributions. Geometrically, one may think1155

of “projecting” the true distributions p(x| . . .) into this subspace of approximating distributions. This1156

projection operation will tend not to amplify differences between distributions, but will generally1157

suppress them; the difference between approximate distributions will be less than the difference in1158

the full space of distributions. Recall that in our derivations we used two distinct limiting processes:1159

one where the entropy of each category shrunk (Figure S1b), and a second where their means1160
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moved towards zero (Figure S1c). After taking the first limit, the proportionality in (5) reduced to1161

the question of whether pb(x|E(s = 0)) approximately equals Epe(s) [pb(x|E(s))]. While these terms1162

may differ significantly in probability space, their projections may not. In other words, the brain’s1163

distributional coding scheme may not be sensitive to these exact differences. This suggests that1164

the simpler the distributions represented by the brain the better our results will hold, since more1165

distributions in the full space map to the same point in the subspace of approximate distributions1166

when the approximating family is limited.1167

Taken together, these points suggest that although the proportionality in (5) is approximate, its1168

accuracy degrades gracefully under more realistic assumptions.1169

Derivation of (28) in terms of tuning to noise1170

If we approximate ε as Gaussian, then from the Taylor expansion of fi(s = 0,π = 1/2;ε) around the1171

mean noise value, it is easy to show that the covariance between neurons i and j due to noise is1172

approximately1173

covε( fi, f j)≈ ∇ε f>i Σε∇ε f j,

where Σε is the covariance of ε, and ∇ε fi is the sensitivity of neuron i to variations in the noise1174

around its mean. Computationally, the noise ε acts on fi through the intermediate step of the1175

posterior, pb(x|s = 0,π = 1/2;ε). Applying the chain rule, the gradient of fi with respect to ε can thus1176

be written as the product of fi’s sensitivity to pb(x| . . .) and the derivative of pb(x| . . .) with respect to1177

ε. The chain rule gives ∇ε fi = Jp
ε ∇p fi, where Jp

ε is the Jacobian (i.e. columns of J are gradients of1178

elements of pb(x| . . .) with respect to the vector ε). The above covariance expression then becomes1179

1180

Σ
ε
i j ≈ ∇p f>i Jp>

ε ΣεJp
ε︸ ︷︷ ︸

Σp

∇p f j . ((28) restated)

Thus we see that the covariance in neural responses induced by task-independent noise can be1181

thought of in a two-step process: the the covariance structure of the noise (Σε ) induces correlated1182

variability in the posterior density (Σp) through the Jacobian matrix of sensitivities (Jp
ε ), which in1183

turn manifests as correlated neural variability as per the “chain rule” argument from (1).1184
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